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ABSTRACT

The relation between the number of representations of an integer n as a

sums of squares induced by λ, sλ (n) and the number of representations

of an integer n as a sums of centred pentagonal numbers induced by λ,
cλ (n) is given by

sλ (8n)− sλ (2n) = βλcλ (5n+ 3) ,

for all non-negative integers n where βλ = 2m + 2m−1(
(
i1
4

)
+

(
i1
2

)(
i2
1

)
+(

i1
1

)(
i3
1

)
) for ij denote the number of parts of λ which are equal to j and

λ = (λ1, λ2, . . . , λm) is a partition of 8. This relation is proved for all 22

partitions of 8 by using the generating function method.

Keywords: Number of representations, squares, centred pentagonal num-

bers.
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1. Introduction

A relation between number of representations of integer n as a sums of
k squares, sk(n) and number of representations of integer n as a sums of k
triangular numbers, tk(n) has been discovered by Barrucand et al. (2002) given
by

sk(8n+ k) = αktk(n),

where

αk = 2k−1
{
2 +

(
k

4

)}
, for 1 ≤ k ≤ 7.

Generating functions method was used in proving this relation. Later, this re-
lation was proved using the combinatorial method by Cooper and Hirschhorn
(2004). However this relation does not hold for any k ≥ 8. This fact has been
proved by Bateman et al. (2001).

Let λ = (λ1, λ2, . . . , λm) be a partition of k where λ1, λ2, . . . , λm are integers
satisfying λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 and λ1+λ2+ . . .+λm = k.We denote sλ (n)
the number of representations of an integer n, a sum of squares induced by λ
and tλ (n) the number of representations of an integer n as a sum of triangular
number induced by λ. In other words, sλ (n) is the number of integer solutions
of the equation

λ1x
2
1 + λ2x

2
2 + . . .+ λmx

2
m = n

and tλ (n) is the number of non-negative integer solutions in the equation

λ1
x1(x1 − 1)

2
+ λ2

x2(x2 − 1)

2
+ . . .+ λm

xm(xm − 1)

2
= n.

Adiga et al. (2005) obtained a relation between sλ (n) and tλ (n) as

sλ (8n+ k) = βλtλ (n)

for 1 ≤ k ≤ 7, where

βλ = 2m + 2m−1
((

i1
4

)
+

(
i1
2

)(
i2
1

)
+

(
i1
1

)(
i3
1

))
(1)

for ij denote the number of parts in λ which are equal to j.
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They proved the result using the generating functions and combinatorial method.
Baruah et al. (2008) proved the relationship between sλ (n) and tλ (n) given by

sλ (8n+ 8)− sλ (2n+ 2) = βλtλ (n)

for λ = (λ1, λ2, . . . , λm) be a partition of 8 using generating function method.

Let cλ (n) denote the number of representations of an integer n as a sums
of centred pentagonal numbers induced by λ. In other words, cλ (n) is the
number of non-negative integer solutions of the equation

λ1
5x21 + 5x1 + 2

2
+ λ2

5x22 + 5x2 + 2

2
+ . . .+ λm

5x2m + 5xm + 2

2
= n.

For example, for n = 23 and λ = (5, 2, 1) we have m = 3,

5
5x21 + 5x1 + 2

2
+ 2

5x22 + 5x2 + 2

2
+

5x23 + 5x3 + 2

2
= 23.

Then 23 = 5(1)+2(6)+1(6) = 5(1)+2(1)+1(16). Thus, (x1, x2, x3) = (0, 1, 1) =
(0, 0, 2). Therefore c(5,2,1)(23) = 2.

Johari et al. (2012) obtained the relation between sλ (n) and cλ (n) as

sλ

(
8n− 3k

5

)
= βλcλ(n)

for 1 ≤ k ≤ 7 where βλ is given by Equation (1) and they proved for this
relation by using the generating function method. Later, the combinatorial
proof was given by Johari et al. (2013).

Ballantine and Merca (2019) used Merca's factorization theorem for Lam-
bert series to obtain relationships between sk(n) and partitions into distinct
parts. They also obtained convolutions involving overpartition functions as
well as pentagonal recurrence formulas for s4(n) and s8(n). These results lead
to new connections between divisors and partitions.

Jha (2020) established a relation between sum of inverses of odd divisors d
of a positive integer n and the number of representations of n as a sum of k
squares sk(n). They proved the following interesting combinatorial identity:∑

d|n

1

d
=

1

2

n∑
k=1

(−1)n+k

k

(
n

k

)
sk(n).
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2. A relation between sum of squares and

sums of centred pentagonal numbers induced by

partitions of 8

In this section, we extend our discussion to the relation between the number
of representations of an integer n as sums of squares and number of represen-
tations of n as sums of centred pentagonal numbers induced by partitions of 8.
The relation is given by following theorem.

Theorem 1. Let λ = (λ1, λ2, . . . , λm) be a partition of 8. Then for any non-

negative integer n, we have

sλ (8n)− sλ (2n) = βλcλ (5n+ 3) ,

where βλ = 2m + 2m−1
((
i1
4

)
+
(
i1
2

)(
i2
1

)
+
(
i1
1

)(
i3
1

))
and ij denote the number of

parts in λ which are equal to j.

We prove Theorem 1 by using generating function method. Let

φ (q) =

∞∑
n=−∞

qn
2

, ψ (q) =

∞∑
n=0

q
n2+n

2 , ω (q) =

∞∑
n=0

q
5n2+5n+2

2 ,

where q is any number in (−1, 1). The generating functions for sλ (n) and
cλ (n) are

∞∑
n=0

s(λ) (n) q
n = φ

(
qλ1
)
φ
(
qλ2
)
. . . φ

(
qλm

)
,

∞∑
n=0

c(λ) (n) q
n = ω

(
qλ1
)
ω
(
qλ2
)
. . . ω

(
qλm

)
.

In order to prove Theorem 1, we need the following lemma.

Lemma 2.1. Let

φ (q) =

∞∑
n=−∞

qn
2

, ψ (q) =

∞∑
n=0

q
n2+n

2 , ω (q) =

∞∑
n=0

q
5n2+5n+2

2 ,

a (q) =

∞∑
m=−∞

∞∑
n=−∞

qm
2+mn+n2

,
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where q is any number in (−1, 1). Then, we have the following relations

φ (q) + φ (−q) = 2φ
(
q4
)
, (2)

φ (q)− φ (−q) = 4qψ
(
q8
)
, (3)

φ (q)φ (−q) = φ2
(
−q2

)
, (4)

φ (q)ψ
(
q2
)

= ψ2 (q) , (5)

a (q) = φ (q)φ
(
q3
)
+ 4qψ

(
q2
)
ψ
(
q6
)
, (6)

φ (q) = φ
(
q4
)
+ 2qψ

(
q8
)
, (7)

φ2 (q) = φ2
(
q2
)
+ 4qψ2

(
q4
)
, (8)

ψ (q)ψ
(
q3
)

= φ
(
q6
)
ψ
(
q4
)
+ qφ

(
q2
)
ψ
(
q12
)
, (9)

φ (q)φ
(
q3
)

= a
(
q4
)
+ 2qψ

(
q2
)
ψ
(
q6
)
, (10)

a (q) = a
(
q4
)
+ 6qψ

(
q2
)
ψ
(
q6
)
, (11)

ψ (q) = q−
1
5ω
(
q

1
5

)
. (12)

Proof. The proof of the Equations (2)-(11) is discussed in Baruah et al. (2008).
We provide the proof for Equation (12) as follows.

ψ (q) =

∞∑
n=0

q
n2+n

2

=

∞∑
n=0

q
n2+n

2 + 1
5−

1
5

=

∞∑
n=0

q
5n2+5n+2

10 − 1
5

= q−
1
5

∞∑
n=0

q(
1
5 )

(
5n2+5n+2

2

)

= q−
1
5ω
(
q

1
5

)
.

Thus, Equation (12) is proved.

Now, by using the Lemma 2.1, we prove the Theorem 1.

Proof of Theorem 1

There are 22 partitions to be considered in this proof. However we only show
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two partitions which are (5, 1, 1, 1) and (3, 3, 1, 1). Similar approach is used for
proving other 20 partitions.

1. Case λ = (5, 1, 1, 1)

∞∑
n=0

s(5,1,1,1)(n)q
n = φ

(
q5
)
φ (q)φ2 (q) .

Apply Equation (7) and Equation (8) to get

∞∑
n=0

s(5,1,1,1)(n)q
n =

[
φ
(
q20
)
+ 2q5ψ

(
q40
)] [

φ
(
q4
)
+ 2qψ

(
q8
)]

[
φ2
(
q2
)
+ 4qψ2

(
q4
)]

= φ
(
q20
)
φ
(
q4
)
φ2
(
q2
)
+ 4qφ

(
q20
)
φ
(
q4
)
ψ2
(
q4
)

+2qφ
(
q20
)
ψ
(
q8
)
φ2
(
q2
)
+ 8q2φ

(
q20
)
ψ
(
q8
)
ψ2
(
q4
)

+2q5ψ
(
q40
)
φ
(
q4
)
φ2
(
q2
)
+ 8q6ψ

(
q40
)
φ
(
q4
)
ψ2
(
q4
)

+4q6ψ
(
q40
)
ψ
(
q8
)
φ2
(
q2
)
+ 16q7ψ

(
q40
)
ψ
(
q8
)
ψ2
(
q4
)
.

Extract the even powers of q, then replace q2 with q, gives

∞∑
n=0

s(5,1,1,1) (2n) q
n = φ

(
q10
)
φ
(
q2
)
φ2 (q) + 8qφ

(
q10
)
ψ
(
q4
)
ψ2
(
q2
)

+8q3ψ
(
q20
)
φ
(
q2
)
ψ2
(
q2
)

+4q3ψ
(
q20
)
ψ
(
q4
)
φ2 (q) . (13)

Apply Equation (8) to Equation (13), we have

∞∑
n=0

s(5,1,1,1) (2n) q
n = φ

(
q10
)
φ
(
q2
) [
φ2
(
q2
)
+ 4qψ2

(
q4
)]

+8qφ
(
q10
)
ψ
(
q4
)
ψ2
(
q2
)
+ 8q3ψ

(
q20
)
φ
(
q2
)
ψ2
(
q2
)

+4q3ψ
(
q20
)
ψ
(
q4
) [
φ2
(
q2
)
+ 4qψ2

(
q4
)]
.

Extract the even powers of q, then replace q2 with q, yields

∞∑
n=0

s(5,1,1,1) (4n) q
n = φ

(
q5
)
φ (q)φ2 (q) + 16q2ψ

(
q10
)
ψ3
(
q2
)
. (14)

26 Malaysian Journal of Mathematical Sciences



Relation Between Sums of Squares and Sums of Centred Pentagonal Numbers

Apply Equation (7) and Equation (8) to Equation (14) , we have

∞∑
n=0

s(5,1,1,1) (4n) q
n =

[
φ
(
q20
)
+ 2q5ψ

(
q40
)] [

φ
(
q4
)
+ 2qψ

(
q8
)]

[
φ2
(
q2
)
+ 4qψ2

(
q4
)]

+ 16q2ψ
(
q10
)
ψ3
(
q2
)

= φ
(
q20
)
φ
(
q4
)
φ2
(
q2
)
+ 4qφ

(
q20
)
φ
(
q4
)
ψ2
(
q4
)

+2qφ
(
q20
)
ψ
(
q8
)
φ2
(
q2
)
+ 8q2φ

(
q20
)
ψ
(
q8
)
ψ2
(
q4
)

+2q5ψ
(
q40
)
φ
(
q4
)
φ2
(
q2
)
+ 8q6ψ

(
q40
)
φ
(
q4
)
ψ2
(
q4
)

+4q6ψ
(
q40
)
ψ
(
q8
)
φ2
(
q2
)
+ 16q7ψ

(
q40
)
ψ
(
q8
)
ψ2
(
q4
)

+16q2ψ
(
q10
)
ψ3
(
q2
)
.

Extract the even powers of q, then replace q2 with q, the result is

∞∑
n=0

s(5,1,1,1) (8n) q
n = φ

(
q10
)
φ
(
q2
)
φ2 (q) + 8qφ

(
q10
)
ψ
(
q4
)
ψ2
(
q2
)

+8q3ψ
(
q20
)
φ
(
q2
)
ψ2
(
q2
)
+ 4q3ψ

(
q20
)
ψ
(
q4
)
φ2 (q)

+16qψ
(
q5
)
ψ3 (q) .

From Equation (13), we have

∞∑
n=0

s(5,1,1,1) (8n) q
n =

∞∑
n=0

s(5,1,1,1) (2n) q
n + 16qψ

(
q5
)
ψ3 (q) . (15)

Apply Equation (12) to Equation (15), we have

∞∑
n=0

s(5,1,1,1) (8n) q
n =

∞∑
n=0

s(5,1,1,1) (2n) q
n + 16q

[
q−

5
5ω
(
q

5
5

)] [
q−

1
5ω
(
q

1
5

)]3
=

∞∑
n=0

s(5,1,1,1) (2n) q
n + 16q−

3
5ω
(
q

5
5

)
ω3
(
q

1
5

)
=

∞∑
n=0

s(5,1,1,1) (2n) q
n + 16

∞∑
n=0

c(5,1,1,1) (n) q
n−3
5 .

Equate coe�cients of qn, we get

s(5,1,1,1) (8n) = s(5,1,1,1) (2n) + 16c(5,1,1,1) (5n+ 3) .

For λ = (5, 1, 1, 1), we have m = 4, i1 = 3, i2 = 0, i3 = 0. Hence

β(5,1,1,1) = 24 + 23
((

3
4

)
+
(
3
2

)(
0
1

)
+
(
3
1

)(
0
1

))
= 24 = 16.
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Thus, Theorem 1 for the partition λ = (5, 1, 1, 1) is proved.

2. Case λ = (3, 3, 1, 1)

∞∑
n=0

s(3,3,1,1) (n) q
n = φ

(
q3
)
φ
(
q3
)
φ (q)φ (q)

Apply Equation (10), we have

∞∑
n=0

s(3,3,1,1) (n) q
n =

[
a
(
q4
)
+ 2qψ

(
q2
)
ψ
(
q6
)] [

a
(
q4
)
+ 2qψ

(
q2
)
ψ
(
q6
)]

= a2
(
q4
)
+ 4qa

(
q4
)
ψ
(
q2
)
ψ
(
q6
)
+ 4q2ψ2

(
q2
)
ψ2
(
q6
)
.

Extract the even powers of q, then replace q2 with q. The result is

∞∑
n=0

s(3,3,1,1) (2n) q
n = a2

(
q2
)
+ 4qψ2 (q)ψ2

(
q3
)
. (16)

Apply Equation (9) and Equation (6) to Equation (16) , we have

∞∑
n=0

s(3,3,1,1) (2n) q
n =

[
φ
(
q2
)
φ
(
q6
)
+ 4q2ψ

(
q4
)
ψ
(
q12
)]2

+4q
[
φ
(
q6
)
ψ
(
q4
)
+ qφ

(
q2
)
ψ
(
q12
)]2

= φ2
(
q2
)
φ2
(
q6
)
+ 16q4ψ2

(
q4
)
ψ2
(
q12
)

+4qφ2
(
q6
)
ψ2
(
q4
)
+ 16q2φ

(
q6
)
ψ
(
q4
)
φ
(
q2
)
ψ
(
q12
)

+4q3φ2
(
q2
)
ψ2
(
q12
)
.

Extract the even powers of q, then replace q2 with q yields

∞∑
n=0

s(3,3,1,1) (4n) q
n = φ2 (q)φ2

(
q3
)
+ 16q2ψ2

(
q2
)
ψ2
(
q6
)

+16qφ (q)φ
(
q3
)
ψ
(
q2
)
ψ
(
q6
)
. (17)
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Apply Equation (10) to Equation (17) , we have

∞∑
n=0

s(3,3,1,1) (4n) q
n =

[
a
(
q4
)
+ 2qψ

(
q2
)
ψ
(
q6
)]2

+16q2ψ2
(
q2
)
ψ2
(
q6
)
+ 16qψ

(
q2
)
ψ
(
q6
)[

a
(
q4
)
+ 2qψ

(
q2
)
ψ
(
q6
)]

= a2
(
q4
)
+ 4qa

(
q4
)
ψ
(
q2
)
ψ
(
q6
)
+ 4q2ψ2

(
q2
)
ψ2
(
q6
)

+16q2ψ2
(
q2
)
ψ2
(
q6
)
+ 16qψ

(
q2
)
ψ
(
q6
)
a
(
q4
)

+32q2ψ2
(
q2
)
ψ2
(
q6
)
.

Extract the even powers of q, then replace q2 with q. The result is

∞∑
n=0

s(3,3,1,1) (8n) q
n = a2

(
q2
)
+ 4qψ2 (q)ψ2

(
q3
)
+ 48qψ2 (q)ψ2

(
q3
)
.

From Equation (16), we have

∞∑
n=0

s(3,3,1,1) (8n) q
n =

∞∑
n=0

s(3,3,1,1) (2n) q
n + 48qψ2 (q)ψ2

(
q3
)
. (18)

Apply Equation (12) to Equation (18), we have

∞∑
n=0

s(3,3,1,1) (8n) q
n =

∞∑
n=0

s(3,3,1,1) (2n) q
n + 48q

[
q−

3
5ω
(
q

3
5

)]2 [
q−

1
5ω
(
q

1
5

)]2
=

∞∑
n=0

s(3,3,1,1) (2n) q
n + 48q−

3
5ω2

(
q

3
5

)
ω2
(
q

1
5

)
=

∞∑
n=0

s(3,3,1,1) (2n) q
n + 48

∞∑
n=0

c(3,3,1,1) (n) q
n−3
5 .

Equate coe�cients of qn gives

s(3,3,1,1) (8n) = s(3,3,1,1) (2n) + 48c(3,3,1,1) (5n+ 3) .

For λ = (3, 3, 1, 1), we have m = 4, i1 = 2, i2 = 0, i3 = 2. Hence

β(3,3,1,1) = 24 + 23
((

2
4

)
+
(
2
2

)(
0
1

)
+
(
2
1

)(
2
1

))
= 48.

Thus, Theorem 1 for the partition λ = (3, 3, 1, 1) is proved. �
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3. Conclusion

Relation between the number of representations of an integer n as a sum
of squares induced by λ, sλ (n) and the number of representations of an in-
teger n as a sum of centred pentagonal numbers induced by λ, cλ (n) for
λ = (λ1, λ2, . . . , λm) a partition of 8 is given by

sλ (8n)− sλ (2n) = βλcλ (5n+ 3)

for all non-negative integers n where βλ = 2m+2m−1
((
i1
4

)
+
(
i1
2

)(
i2
1

)
+
(
i1
1

)(
i3
1

))
for ij denote the number of parts of λ which are equal to j. There are 22 parti-
tions of 8 to be considered. Therefore, we have proved the obtained relation for
all partitions of 8 using the generating function method. This project can be
extended to �nd the relation between sλ(n) and cλ(n) for λ = (λ1, λ2, . . . , λm)
is a partition of k > 8.
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